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Abstract

Context Habitat destruction is the leading threat to

terrestrial biodiversity, isolating remnant habitat in a

matrix of modified vegetation.

Objectives Our goal was to determine how species

richness in several broad taxonomic groups from rem-

nant forest was influenced by matrix quality, which we

characterized by comparing plant biomass in forest

and the surrounding matrix.

Methods We coupled data on species-area relation-

ships (SARs) in forest remnants from 45 previously

published studies with an index of matrix quality

calculated using new estimates of plant biomass

derived from satellite imagery.

Results The effect size of SARs was greatest in

landscapes with low matrix quality and little forest

cover. SARs were generally stronger for volant than

for non-volant species. For the terrestrial taxa included

in our analysis, matrix quality decreased as the

proportion of water, ice, or urbanization in a landscape

increased.

Conclusions We clearly demonstrate that matrix

quality plays a major role in determining patterns of

species richness in remnant forest. A key implication

of our work is that activities that increase matrix

quality, such as active and passive habitat restoration,

may be important conservation measure for maintain-

ing and restoring biodiversity in modified landscapes.

Keywords Connectivity � Dispersal � Habitat loss �
Habitat modification � Isolation � Patch

Introduction

Habitat loss is the primary threat to terrestrial biodi-

versity (Barnosky et al. 2012; Newbold et al. 2016).

The link between habitat loss and biodiversity main-

tenance is rooted in the species-area relationship

(SAR), which states that large areas of habitat harbor

more species than small habitat areas. Large habitats

are relatively species-rich because they are better

buffered from stochastic extinction events (Gonzalez

and Chaneton 2002), represent bigger targets for

colonists (Jones et al. 2015), and contain more

resources (Steinmann et al. 2011) than small areas.

The benefits of large areas for biodiversity provide the

key rationale for conserving large, continuous habitat

patches (Paz Durán et al. 2016), a hallmark of global
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conservation efforts (Edgar et al. 2014; Watson et al.

2014).

Although habitat loss is recognized as the major

threat to biodiversity, removal of habitat is usually

accompanied by fragmentation, a change in landscape

configuration resulting from the breaking apart of

habitat (Fahrig 2003). Whereas habitat loss is a

process in which the total amount of habitat in a

landscape decreases, and the mean distance among

patches of remnant habitat increases, fragmentation is

the pattern that frequently emerges in such landscapes,

wherein the number of habitat remnants and total edge

length increase, and mean remnant size decreases

(Fahrig 2003). Much debate has focused on the

relative importance of habitat loss and fragmentation

for biodiversity maintenance (Fahrig 2013; Rybicki

and Hanski 2013). However, the fact that habitat loss

and fragmentation are often strongly correlated (Haila

2002) means that populations in highly modified

landscapes are frequently confined to relatively small

and geographically distant habitat remnants that

experience little if any demographic and genetic

rescue because of limited inter-patch immigration

(Brown and Kodric-Brown 1977; Brook and Buettel

2016).

Forest remnants resulting from deforestation

resemble oceanic islands, so the extinction and

colonization processes unified in the equilibrium

theory of island biogeography (MacArthur andWilson

1967) are thought to explain species responses in

deforested terrestrial landscapes (Haddad et al. 2015;

Resasco et al. 2017). An important difference between

oceanic and terrestrial landscapes is that oceanic

islands are separated by a truly inhospitable aquatic

barrier, whereas forest remnants are generally sur-

rounded by a matrix of modified vegetation that may

not be uniformly inhospitable. Many studies have

found that the matrix plays an important role in

determining patterns of species occurrence, abun-

dance, and richness in forest remnants (Cook et al.

2002; Prevedello and Vieira 2010; Nowakowski et al.

2013a, b). For forest-dwelling species, low- and high-

quality matrix may be differentiated by plant biomass

(Marzluff and Ewing 2001; Kupfer et al. 2006; Biswas

and Wagner 2012). Here we considered high quality

matrix to have similar biomass to forest remnants

(e.g., secondary regrowth around primary forest rem-

nants), whereas low quality matrix had low plant

biomass (e.g., clear cuts, savanna, or maintained

grassland surrounding remnant forest).

Variation in matrix quality can influence organisms

in many ways (Kupfer et al. 2006), but movement

dynamics are particularly important because they

directly influence the colonization success of dispers-

ing individuals (Holderegger and Wagner 2008;

Eycott et al. 2010; Martin and Fahrig 2012) that

permits demographic and genetic rescue of small

populations. Specifically, high matrix quality

increases permeability, the extent to which the matrix

facilitates movement of individuals among habitat

patches (Collinge and Palmer 2002; Haynes and

Cronin 2006). For example, ant richness in Mexican

coffee plantations (Perfecto and Vandermeer 2002)

and squirrel occupancy in urban woodlands in Brus-

sels (Verbeylen et al. 2003) both increased when

patches were surrounded by high quality matrix,

regardless of the distance to the nearest patch.

Populations of Hazel Grouse on forest remnants in

Sweden showed evidence of isolation over much

shorter distances when surrounded by low-quality

matrix (farmland) than high-quality matrix (conifer-

ous forest; Åberg et al. 1995). Arboreal primates in

Kenya were encountered more frequently in high-

quality matrix (tall vegetation with some tree cover),

than in low-quality matrix (short vegetation with little

canopy cover; Anderson et al. 2007). The importance

of matrix quality is also apparent in synthetic studies

across taxa and landscape types. For example, one

meta-analysis found that although patch area typically

was the primary driver of species occupancy in

fragmented habitats, isolation (distance to nearest

patch) was most important when habitat patches were

embedded in a low-quality, clear-cut matrix (Prugh

et al. 2008). Another synthesis found that metrics

describing matrix quality were more important for

predicting species occupancy and abundance on

habitat patches than distance-based isolation metrics

(Watling et al. 2011).

Matrix quality has even been shown to influence the

strength of the SAR via its relationship with z, the

slope of the regression line resulting from log10
transformations of species richness and area of habitat

remnants. Generally, z-scores range between 0.1 and

0.5 (Lomolino 2000), with a typical, ‘canonical’ value

of 0.262 (Preston 1962). Mean z-scores are greater on

oceanic islands than on habitat remnants in agricul-

tural landscapes (Watling and Donnelly 2006), and
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greater on forest remnants than in equivalent areas

sampled in continuous forest (reviewed in Fahrig

2013). Low z-scores suggest that populations are

experiencing low extirpation rates (Losos and Schluter

2000; Rivard et al. 2000; Gao and Perry 2016) at least

in part because of demographic and genetic rescue as

individuals move through relatively permeable matrix

(Hovestadt and Poethke 2005; Kierepka et al. 2016).

Although matrix quality may be a key variable

influencing species distributions in modified land-

scapes, its importance may be taxon-specific, and

influenced by additional factors such as the extent of

forest cover in a landscape. Species traits may mediate

responses to matrix quality because gap-crossing

ability (Lees and Peres 2009) or capacity for orienting

through the matrix (Pettit et al. 2017) may influence

how species perceive matrix quality. With respect to

forest cover, the fragmentation threshold hypothesis

suggests that negative effects of decreasing patch size

and increasing isolation on species richness do not

become apparent until 70–90% of habitat has been

removed from a landscape (Andrén 1996). When

forest cover is high, populations may not be function-

ally isolated from one another, and species richness

may vary little among remnants (Rybicki and Hanski

2013). As forest cover decreases, populations become

increasingly isolated, and small populations become

vulnerable to extirpation.

It is clear that matrix quality can influence species

richness in remnant forest, but the generality and

magnitude of matrix effects are not well understood.

In an effort to clarify the role of matrix quality in

deforested landscapes, we used a meta-analytic

approach to address the following research question:

How does variation in matrix quality influence the

strength of SARs in forest remnants? We predicted

that the strength of SARs, measured using an effect

size metric derived from the correlation coefficient

between species richness and remnant area, would be

strongest when matrix quality and forest cover were

low.We also predicted the existence of strong SARs in

landscapes with low matrix quality for terrestrial

dispersers (non-flying invertebrates, amphibians, rep-

tiles, and mammals) that experienced movement

constraints and infrequent rescue when matrix quality

was low, but weak effects for volant species. Finally,

we predicted that matrix quality would be inversely

related to the proportion of ice, water, and urban areas

in study landscapes, because those land cover types are

thought to be particularly impermeable to movement

for many terrestrial species (Forman 2000; Lees and

Gilroy 2014). To test our predictions, we coupled

SARs from previously published studies from around

the world with a metric of matrix quality obtained

from remotely sensed satellite data, yielding a syn-

thetic, quantitative assessment of the influence of

matrix quality on SARs in remnant forest.

Methods

Literature survey

We searched the primary literature for studies on

species richness on forest remnants in modified

terrestrial landscapes. To be included in our analysis,

we required that studies (1) reported either the

correlation coefficient (Pearson’s r) between log10-

transformed species richness and remnant area, or raw

data from which we could calculate r; (2) included

sufficient information for identification of forest

remnants in satellite imagery, either by description,

geographic coordinates, or a map of the study area; (3)

surveyed forest remnants that could be differentiated

from the surrounding landscape in satellite images. If

any of the three criteria were not met, the study was

excluded from our analysis (Table S1). Two studies

investigated different clusters of forest remnants in a

single region. The two clusters did not overlap, so

were included as separate landscapes, with individual

SARs and landscape variables calculated in each case.

We focused on remnant forest because of difficulty

differentiating non-forest habitat from modified cover

in satellite images, and because most studies of habitat

modification center on forest.

We first reviewed papers from a previous meta-

analysis (Watling and Donnelly 2006), which included

148 studies published through April 2005. Although

all of those studies included data on the SAR, only 24

(* 16%) met inclusion criteria two and three and

were added to our database. We then searched Web of

Science with the search terms ‘species richness and

habitat fragmentation and isolation’ to update the

database with studies from April 2005 to June 2016.

Searching these keywords resulted in a total of 339

articles, of which 21 (* 6%) met the inclusion

criteria. Therefore, our analyses are based on 45

studies conducted in modified landscapes around the
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world (Figure S1, Table S2). We extracted the

following data from each study: the r value of the

correlation between log10-transformed species rich-

ness and remnant area, number of remnants, and

taxonomic group (birds, reptiles and amphibians,

mammals, plants, or invertebrates).

Describing matrix quality

We downloaded satellite images of each study land-

scape from the Landsat 4–5 mission archive, which

includes data obtained between 1984 and 2013, and

used the cloud-free image closest to the date in which

fieldwork was completed. All satellite images were

obtained within five years of the sampling period. We

used standard calibration coefficients (Chandler et al.

2009) to convert the raw data to reflectance values in

each of six spectral bands, and projected images into

the equal-area Eckert IV projection. We created a

minimum bounding polygon circumscribing each

study landscape by connecting points superimposed

on the satellite images at the outer edges of the most

outlying remnants surveyed. To ensure that matrix

quality estimates were obtained within a biologically

relevant landscape in each study, we buffered each

study area polygon by the mean maximum dispersal

distance for the study taxon using previously-pub-

lished data on body mass-dispersal relationships

(Jenkins et al. 2007). Buffer radii for each taxonomic

group were 32 m for vascular plants, 794 m for

inverts, 3.1 km for small rodents, 3.1 km for reptiles

and amphibians, 6.3 km for birds, and 63 km for large

mammals.

Before assessing matrix quality, it was necessary to

differentiate forest remnants from the surrounding

matrix. To do this, we created a supervised classifi-

cation of each study landscape (Churches et al. 2014),

using random forest (Breiman 2001) and generalized

boosting (Friedman 2001) algorithms to differentiate

forest from the surrounding matrix. To create our

classification, we first superimposed 1000 points at

random throughout each landscape, and visually

assessed whether the points intersected forest or non-

forest using true- and false-color renderings of the

Landsat images. From this pool of classified points, we

extracted reflectance values in each of the six spectral

bands for 100 randomly selected points in forest and

non-forest, respectively. The 200 points were then

split randomly into two groups of 100 points each for

model training and testing. A random 75 points from

the training set were used to calibrate a model, which

was then evaluated using 25 points from the testing

set. We repeated this process five times, each time

using a unique, random 75–25 training–testing split of

the data. Models were evaluated using the true skill

statistic (TSS), a metric of model accuracy that ranges

from 0 to 1, with higher values indicating greater

ability to discriminate forest from non–forest (Al-

louche et al. 2006). All models has TSS values C 0.70

(Table S2), indicating good classification ability. We

therefore used all 200 points to create a prediction map

for each landscape. We converted continuous predic-

tion maps indicating the probability that individual

cells were forested to binary forest/non-forest maps

using a unique threshold for each of the 45 landscapes,

determined as the value at which TSS was maximized

in the test data.

We used the Enhanced Vegetation Index (EVI) as

the basis for our matrix quality metric. The EVI yields

values between - 1 and 1, with large values repre-

senting high plant biomass (Huete and Justice 1999).

The EVI provides accurate estimates of plant biomass

even in high-biomass landscapes, and is less prone to

atmospheric interference than other indices such as the

normalized difference vegetation index (Huete et al.

2002). We calculated a standardized matrix quality

metric as

1� EVIforest � EVInon�forest

EVItotal

� �

by differentiating mean EVI from pixels intersecting

forest or non-forest portions of each landscape. The

metric describes the difference in plant biomass

between forest and matrix as a proportion of the mean

EVI in each landscape. Small values of the metric

indicate low-quality matrix, where plant biomass was

much lower than in forest (Fig S2).

Data analysis

To measure the strength of the SAR in each of the 45

studies, we converted Pearson’s r to an estimate of

effect size using Fisher’s z transformation: z ¼ 0:5�
ln 1þr

1�r

� �
with variance vz ¼ 1

n�3
. Our first two predic-

tions were evaluated using weighted means analysis of

variance (ANOVA), with each study weighted by 1
vz
.

The sum of squares value for each predictor from
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weightedmeans ANOVAs were reported as Cochran’s

Q heterogeneity statistic, and tested against a Chi

square distribution with 1 degree of freedom (Kon-

stantopoulos and Hedges 2009).

We first tested the prediction that the strength of the

SAR decreased as matrix quality increased in land-

scapes with little forest cover. For this test we included

matrix quality, forest cover, and their interaction as

predictor variables, and Fisher’s z as the response

variable. We expected this analysis to reveal a

significant interaction between matrix quality and

forest cover, with particularly strong and negative

relationships between effect size and matrix quality in

landscapes with low forest cover. Before conducting

regressions, we confirmed that matrix quality and

forest cover were not highly correlated (Pearson’s

r = 0.39). To test the prediction that the strength of the

SAR decreased as matrix quality increased for terres-

trial dispersers but not volant taxa, we first categorized

the dispersal mode for species in each study as

primarily volant (birds and flying invertebrates) or

non-volant (all other taxa). We included dispersal

mode, matrix quality, and their interaction as predictor

variables, and Fisher’s z as the response, with the

expectation of a significant interaction between matrix

quality and dispersal mode. Prior to analysis, we

confirmed that the observed number of studies of

volant (N = 19) and non-volant species (N = 26) did

not differ significantly from expected counts

(v2 = 1.09, df = 1, P = 0.297). Finally, we used

simple linear regression to test the prediction that

matrix quality decreased with increasing cover of ice,

water, and urban areas. Land cover data were acquired

from the European Space Agency Climate Change

Initiative (ESA 2017) for years 2000, 2005, and 2010,

and the layer that corresponded most closely to the

year that fieldwork was conducted for each study was

used for analysis. Satellite images were processed for

analysis using ArcMap version 10.3 (Environmental

Systems Research Institute 2012) and all other anal-

yses were completed in R (R core team 2016).

Results

We acquired species and landscape data for 45

landscapes in 24 countries, including 695 patches

ranging in size from 0.1 to 23,300 hectares. The 45

studies included in our database were predominately

of invertebrates (16 studies, 36%) and birds (13

studies, 29%), with fewer studies of mammals (nine

studies, 20%), amphibians and reptiles (four studies,

9%), and plants (three studies, 7%).

Meta-analysis revealed that the effect of patch area

on species richness was influenced by the interaction

between matrix quality and forest cover (Q = 10.75,

P = 0.001). Inspection of the interaction plot con-

firmed that the strength of SARs decreased with

increasing matrix quality in low forest cover land-

scapes, with weaker effects in landscapes with rela-

tively high forest cover (Fig. 1). However, our

prediction that matrix quality would interact with

dispersal mode to influence the strength of SARs was

not supported (Q = 1.01, P = 0.315). There was a

significant main effect of dispersal mode on the

strength of SARs (Q = 18.26, P\ 0.001), with overall

stronger SARs reported for volant compared with non-

volant species (Fig. 2). As expected from our third

prediction, matrix quality decreased as landscapes

became increasingly dominated by impermeable land

cover types (water, ice, and urban areas; F1,43 = 17.94,

P\ 0.001; Fig. 3).

Discussion

Here we provide clear, quantitative evidence to

suggest that matrix quality plays a major role in

determining patterns of species richness in remnant

forest. Species-area relationships were particularly

strong in landscapes with low matrix quality and little

remaining forest. We found that SARs were stronger

for volant species such as birds and flying inverte-

brates that for terrestrial dispersers, but no differences

in the response to matrix quality by dispersal mode.

Our data underscore the importance of conservation

actions that focus on increasing matrix quality, such as

actively or passively promoting vegetation regrowth

in deforested landscapes.

We found that the strength of the SAR decreased

with increasing matrix quality in landscapes with less

than about 20% forest cover (Fig. 1). The relationship

implies that low matrix quality may exacerbate the

negative effects of habitat loss in severely deforested

landscapes. The matrix matters for biodiversity in part

because it influences the rate and success of movement

among habitat remnants (Prugh et al. 2008; Prevedello

and Vieira 2010; Ruffell et al. 2017). For example,
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voles in Indiana meadows (Russell et al. 2007) and

beetles in California prairies (Collinge and Palmer

2002) have been found to avoid or make reduced use

of portions of the matrix comprised of low-quality,

short-statured vegetation compared with tall grasses

that more closely resemble their forest habitat. In

another study, understory forest birds avoided corn

fields, preferring to move among forest remnants via

relatively high-quality Eucalyptus stands, possibly

because of decreased predation risk or increased

resource availability (Biz et al. 2017). When large

differences in plant biomass between forest and matrix

in low-quality landscapes prevent inter-patch move-

ment and decrease functional connectivity (Tischen-

dorf and Fahrig 2000; Smith and Hellmann 2002;

Vasudev et al. 2015), remnants may experience

infrequent demographic or genetic rescue (Brown

and Kodric-Brown 1977), a process that is likely to be

particularly important in the most severely deforested

landscapes (Fig. 1).

We observed stronger overall SARs for volant

compared with non-volant taxa, but no indication that

responses to matrix quality differed significantly by

dispersal mode. Although we were initially surprised

that SARs were strongest for volant species, previous

research has demonstrated that both birds and flying

invertebrates may limit travel through the matrix

(Desrochers and Hannon 1997; Castellón and Sieving

2006). Some species of understory birds even avoid

entirely crossing the matrix (Harris and Reed 2002;

Şekercioḡlu et al. 2002). Furthermore, birds and

butterflies often respond relatively quickly to even

subtle structural changes in the matrix, suggesting that

they have great ability to perceive matrix quality

(Ricketts 2001; Ries and Debinski 2001; Martin and

Possingham 2005). Inter-patch movements may be

Fig. 1 The strength of the species-area relationship (measured

as the effect size of the correlation between log10 (patch area)

and log10 (species richness)) decreased with matrix quality in

landscapes with low forest cover, but was less affected by

matrix quality in landscapes with high forest cover. Here we

describe matrix quality in terms of plant biomass, such that high-

quality matrix has greater plant biomass than low-quality

matrix. To illustrate the interaction between forest cover and

matrix quality on the effect size of the species-area relationship,

we modeled the relationship between Fisher’s z and matrix

quality at three levels of forest cover: 10, 20, and 30%. Only four

of 45 studies included in the analysis occurred in landscapes

where forest cover exceeded 30%
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Fig. 2 The mean effect of

patch area on species

richness was greater for

volant species than for non-

volant taxa. Individual

effects for each study are

superimposed over the

boxplots

Fig. 3 Matrix quality

decreases as the proportion

of impermeable terrestrial

cover types (ice, water, and

urban areas) increases
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severely or entirely inhibited for species able to

sample and perceive low-quality matrix as inhos-

pitable (Clobert et al. 2009), whereas species with

limited perceptual ability may not avoid the matrix as

frequently. Although decades of research have

revealed few taxon-based differences in SARs that

can be interpreted clearly in terms of dispersal ability

(Öckinger et al. 2010; Aranda et al. 2013; Matthews

et al. 2016; Fattorini et al. 2017), most of that work has

focused on z-scores, rather than the effect size metric

we analyzed here. We suggest that the strong effect of

patch size on species richness that we observed for

volant species may be a consequence of greater

perceptual abilities for flying organisms compared

with passive or terrestrial dispersers, but emphasize

that more data are needed to evaluate this possibility.

Our analysis found particularly strong gradients in

species richness in landscapes where forest remnants

were surrounded by low-quality matrix. The most

important way to mitigate species losses in modified

landscapes is to minimize deforestation, although

alleviating the pace of deforestation is complex,

especially in the face of a growing human population

and the possibility of future food insecurity (Garibaldi

et al. 2017). However, our results imply that mini-

mizing species losses in deforested landscapes may

also be achieved by enhancing matrix quality to

increase landscape connectivity. Several features have

been suggested to increase landscape connectivity,

including corridors (Gilbert-Norton et al. 2010; Had-

dad et al. 2017) and small stepping stone fragments

that reduce effective isolation in fragmented land-

scapes (Baum et al. 2004; Saura 2014). Another way to

increasing landscape connectivity is to increase matrix

permeability via passive or active regeneration

(Smallbone et al. 2014; de Rezende et al. 2015).

Although active regeneration of the matrix may be

more expensive than passive regeneration (Brancalion

et al. 2016), it may increase the value of ecosystem

services in managed landscapes, partially compensat-

ing for production losses tied to livestock, agriculture,

and timber harvest (Bullock et al. 2011).

Managing the matrix to avert species losses in

modified landscapes has become an increasingly

important conservation strategy. One of the best

examples of a large-scale conservation strategy

focused on enhancing matrix quality is the Atlantic

Forest Restoration Pact, in which more than 260

groups have organized to actively restore 15 million

hectares of deforested and degraded lands by the year

2050 with the goal of conserving biodiversity (Pinto

et al. 2014). In Costa Rica, the Payment for Environ-

mental Services Program reimburses landowners for

the ecosystem services their property provides through

biodiversity, water, and carbon payments, as long as

landowners protect existing vegetation or plant tree

plantations on their property (Pagiola 2008). The

benefit of conservation plans such as these are multi-

faceted, enhancing the delivery of ecosystem services

while increase landscape connectivity, with collateral

benefits for biodiversity by facilitating movement

between forest remnants.

We used satellite imagery and remote sensing

techniques to provide a metric of matrix quality that

helps explain trends in species responses to landscape

modification. A drawback to using a single metric is

that it may not adequately describe matrix quality for

all species. For example, distributions of some species

are limited by the presence of keystone species rather

than habitat quality (e.g., presence of predators

determined by prey; Delibes-Mateos et al. 2007).

Also, resource-limited habitat specialists such as

monarch butterflies may not use the matrix the same

way as generalist butterflies (Flockhart et al. 2017).

Our approach does not provide a substitute for detailed

species management plans. However, because it is

impractical to generate species-specific data for all

species of conservation concern, our approach to

assessing matrix quality may be applied as an initial

assessment for many species at once. Data generaliz-

ing species responses to matrix quality can be used to

suggest preliminary conservation strategies for many,

rather than few species where immediate conservation

practices are needed (Lambeck 1997). For example, in

Peninsular Malaysia, 558 isolated karst forests are at

risk of destruction, and in just twelve forests, sixteen

endemic and seven karst forest-adapted reptile species

have been discovered in a seven-year period (Grismer

et al. 2016). It is likely that these Malaysian species, as

well as many others, are at risk of extinction without

immediate conservation action. Our data suggest that

efforts to increase matrix quality should reduce the

threat of extirpation of vulnerable populations on

small forest remnants.

In conclusion, we found that the effect of patch area

on species richness is greatest in severely deforested

landscapes where matrix quality is low (i.e., there is a

large difference in plant biomass between forest
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remnants and the surrounding matrix). Our analysis of

global land cover confirmed that matrix quality was

lowest in areas dominated by three relatively imper-

meable cover types: ice, water, and urban land. The

impact of matrix quality on species-area relationships

was particularly strong for volant species. Although

the remotely sensed matrix quality metric we used

here is not a perfect substitute for field data describing

how plant biomass influences organismmovement and

population persistence, it does provide an approach

that can be used to generalize one type of matrix effect

on populations in remnant forest. A key implication of

our work is that conservation strategies that incen-

tivize active or passive restoration of the matrix should

help maintain populations on forest remnants.
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